Abstract
A Green function formulation of the Dirac field in curved space is considered in the cases where the mass is constant and where it is regarded as a direct particle field in the manner of Hoyle & Narlikar (1964 c ). This description is equivalent to, and in some ways more satisfactory than, that given in terms of a suitable Lagrangian, in which the Dirac or the mass field is regarded as independent of the geometry. The essential idea is to define the Dirac or the mass field in terms of certain Green functions and sources so that the field equations are satisfied identically, and then to obtain the contribution of these fields to the metric field equations from the variation of a suitable action that is defined in terms of the Green functions and sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.