Abstract

A new method was developed to determine the mutagenic efficacy of a suspected mutagen by employing green fluorescent protein (GFP) as a direct biosensor for mutation detection. Alterations in target gene (AcGFP1) expression after mutagen [(±)-7 p,8 a-dihydroxy-9 a,10 a-epoxy-7,8,9,10-tetrahydrobenzo[ a]pyrene (BPDE)] treatment were measured to detect the mutagenic efficacy of the carcinogen. In contrast to mutagen treatment of the entire plasmid or cell culture, the target AcGFP1gene devoid of the plasmid backbone was exposed to BPDE (10–500 μM) to eliminate the need for an additional fusion gene. Shuttle vectors (pAcGFP-N1) were religated to the AcGFP1 gene with BPDE adducts (0–8.59 μM) and replicated in the eukaryotic host. This approach eliminated false-negative errors in target gene expression that arose from BPDE adduct formation in the residual plasmid backbone rather than in the AcGFP1 gene. Determination of the BPDE–AcGFP1 adducts allowed the quantitative mutagenic effect of the BPDE adducts on AcGFP1 gene expression to be monitored. The results obtained with flow cytometry and confocal microscopy validate our method and demonstrate efficient and direct use of GFP as a biosensor for mutation detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.