Abstract

BackgroundThe amino terminal half of the cellular prion protein PrPc is implicated in both the binding of copper ions and the conformational changes that lead to disease but has no defined structure. However, as some structure is likely to exist we have investigated the use of an established protein refolding technology, fusion to green fluorescence protein (GFP), as a method to examine the refolding of the amino terminal domain of mouse prion protein.ResultsFusion proteins of PrPc and GFP were expressed at high level in E.coli and could be purified to near homogeneity as insoluble inclusion bodies. Following denaturation, proteins were diluted into a refolding buffer whereupon GFP fluorescence recovered with time. Using several truncations of PrPc the rate of refolding was shown to depend on the prion sequence expressed. In a variation of the format, direct observation in E.coli, mutations introduced randomly in the PrPc protein sequence that affected folding could be selected directly by recovery of GFP fluorescence.ConclusionUse of GFP as a measure of refolding of PrPc fusion proteins in vitro and in vivo proved informative. Refolding in vitro suggested a local structure within the amino terminal domain while direct selection via fluorescence showed that as little as one amino acid change could significantly alter folding. These assay formats, not previously used to study PrP folding, may be generally useful for investigating PrPc structure and PrPc-ligand interaction.

Highlights

  • The amino terminal half of the cellular prion protein PrPc is implicated in both the binding of copper ions and the conformational changes that lead to disease but has no defined structure

  • The protein is essential for susceptibility to the Transmissible Spongiform Encephalopathies (TSEs) where the accumulation of a disease associated conformational variant, PrPSc, is dependent on the presence of the cellular PrPc isoform

  • Expression of the PrPc 23–231-green fluorescence protein (GFP) and PrPc 76–156-GFP fusion protein in E.coli led to the accumulation of non-fluorescent insoluble inclusion bodies that were purified to ~90% (Fig 1B) and denatured before dilution into refolding buffer

Read more

Summary

Introduction

The amino terminal half of the cellular prion protein PrPc is implicated in both the binding of copper ions and the conformational changes that lead to disease but has no defined structure. The N-terminal domain of PrPc is flexibly disordered in the full-length molecule [20,21]. This region encodes the octarepeat motifs (residues 23–90) responsible for low affinity copper binding [3,4,22,23,24] and the central hydrophobic region of PrPc observed to be toxic to cells in culture [25], that binds copper (page number not for citation purposes)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.