Abstract

In this report, a green, simple, inexpensive, and effective nonenzymatic electrochemical glucose sensor was fabricated using multi-walled carbon nanotubes (MWCNT) decorated with copper (II) oxide nanoparticles (CuO NPs). Basil seed mucilage (BSM) was served as reducing, capping, and stabilizing agents in the synthesis of CuO NPs.The prepared MWCNT/CuO nanocomposite was characterized using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and electrochemical methods. The FTIR results indicated that the nanocomposite surface was covered by BSM. The FESEM results show that the CuO NPs with an average particle size lower than 10nm have been well distributed on the walls of the MWCNT. The electrochemical behavior of the nanocomposite was explored by studying the electrocatalytic behavior of the screen-printed carbon electrode (SPCE) modified by the nanocomposite (SPCE-MWCNT/CuO) toward the glucose oxidation. In the optimum conditions, the electrode indicated a wide linear response from 5.0 to 620.0μM with regression coefficients of 0.992, the sensitivity of 1050 μA mM-1cm-2, a limit of detection (LOD) of 1.7μM, and a reproducibility with relative standard deviation (RSD) variations from 3.5 to 11% for three measurements at each point. The obtained results also showed good selectivity to glucose against interfering species such as lactate (LA), L-ascorbic acid (AA), and urea (U) due to the use of the negatively charged BSM in the form of a coating on the nanocomposite surface. The applicability of the sensor was successfully verified by the determination of glucose concentration in artificial tears with a certain amount of glucose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call