Abstract

Abstract A mesoporous cobalt ferrite nanostructure was prepared by a green chemistry approach using Pimpinella anisum extract for Cd (II) ions elimination from an aqueous medium. The metal ions adsorption was explored under varying operating conditions, comprising of the pH, initial adsorbate concentration, and contact time. The synthesized sorbent was characterized by various techniques where the XRD data verified a ferrite structure of ≈25 nm crystallite size and the EDX elemental analysis affirmed the presence of the corresponding elements. The CoFe2O4 established porosity characteristic of 10.8 m2 g−1 BET-specific surface area and 0.023 cm3 g−1 pore volume values. Batch mode experiments ascertained that the Cd (II) ions uptake was pH-dependent, with peak removal of 170 mg/g accomplished at pH = 5. The adsorption process of the metal ions onto the mesoporous nanomaterial surface fitted well with the Langmuir isotherm and pseudo-second-order kinetics models. The mechanistic aspects indicated the role of intra-particle and film diffusion in the adsorption process. The adsorbent could efficiently remove the pollutant up 74.3 % to four cycles of successful regeneration. This investigation endorsed that CoFe2O4 might be potent candidate for heavy metals from aqueous systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call