Abstract

In the emergency scenario, wireless communication systems will face spectrum shortage and energy cut-off in case of infrastructure destruction. In this paper, a green cognitive Internet of Things (CIoT) with wireless energy harvesting (WEH) is proposed to share the spectrum licensed to primary user (PU) and harvest the radio frequency (RF) energy of PU's signal, in order to achieve self supply of energy and spectrum. Energy-efficient resource allocation is presented to maximize the average transmission rate of CIoT while guaranteeing the energy saving requirements. The underlay and overlay spectrum access models for CIoT with WEH are described, in which the energy-efficient resource allocations are formulated as joint optimization problems that can be solved using alternating direction optimization (ADO) and Karush-Kuhn-Tucker (KKT) conditions. Results show that the CIoT with WEH can consume less power to achieve larger transmission rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.