Abstract

Changing the structure of supply chains to move towards less polluting industries and better performance has attracted many researchers in recent studies. Design of such networks is a process associated with uncertainties and control of the uncertainties during decision-making is of particular importance. In this paper, a two-stage stochastic programming model was presented for the design of a green closed-loop supply chain network. In order to reach the environmental goals, an upper bound of emission capability that helps governments and industries to control greenhouse gas emissions was considered. During the reverse logistics of this supply chain, waste materials are returned to the forward flow by the disassembly centers. To control the uncertainty of strategic decisions, demand and the upper bound of emission capacity with three possible scenarios is considered. To solve the model, a new accelerated Benders decomposition algorithm along with Pareto-Optimal-Cut was used. The efficiency of the proposed algorithm was compared with the regular Benders algorithm. The effect of different numerical values of parameters and probabilities of scenarios on the total cost was also examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.