Abstract

Biodiesel as a renewable fuel has the potential to replace non-renewable fossil fuels and associated environmental pollution. The most commonly used method in biodiesel production is transesterification of virgin and used oil feedstock. However, the chemical reaction (transesterification) does not proceed spontaneously, which means excess reactants are required to move the reaction to completion. The biodiesel reaction efficiency can be improved by incorporating green chemistry principles and process intensification effects. Green chemistry principles can be used to design chemical products and processes that reduce or eliminate the use and generation of hazardous substances. Microwave- and ultrasound-enhanced biodiesel synthesis can improve the reaction efficiency due to higher product recovery, low by-product formation, and reduced energy consumption. In addition, utilization of green metrics such as E-factor, atom economy (utilization), mass intensity or mass productivity, and reaction mass efficiency can help design safer and highly efficient biodiesel synthesis. Green chemistry principles have been analyzed for other processes in greater details, but they are rarely discussed in the context of biodiesel production. Process intensification by microwave- and ultrasound-mediated biodiesel production was never discussed from the perspective of green chemistry and sustainable process development. This research review article discusses the role of green chemistry and process intensification in biodiesel production followed by specific examples and illustrations on green metrics of microwave- and ultrasound-enhanced biodiesel synthesis and the effect of catalysts and solvents including discussions on reaction kinetics and activation energy in detail for the first time in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call