Abstract

The selective oxidation of alcohol using molecular oxygen as an oxidant and water as a green solvent is of great interest in green chemistry. In this work, we present a systematic study of a Pt/ZnO catalyst for the selective oxidation of benzyl alcohol at room temperature under base-free aqueous conditions. Experimental observations and density functional theory calculations suggest that ZnO as a support can facilitate the adsorption of benzyl alcohol, which subsequently reacts with the activated oxygen species on the Pt catalyst, producing benzaldehyde. The resulting solid achieves a high conversion (94.1 ± 5.1% in 10 h) of benzyl alcohol and nearly 100% selectivity to benzaldehyde with ambient air as the oxidant. In addition, by introducing a small amount of Bi (1.78 wt%) into Pt/ZnO, we can further enhance the activity by 350%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.