Abstract

A novel series of biodegradable polylactide-based triblock polyurethane (TBPU) copolymers covering a wide range of molecular weights and compositions were synthesized for potential use in biomedical applications. This new class of copolymers showed tailored mechanical properties, improved degradation rates, and enhanced cell attachment potential compared to polylactide homopolymer. Triblock copolymers, (TB) PL-PEG-PL, of different compositions were first synthesized from lactide and polyethylene glycol (PEG) via ring-opening polymerization in the presence of tin octoate as the catalyst. After which, polycaprolactone diol (PCL-diol) reacted with TB copolymers using 1,4-butane diisocyanate (BDI) as a nontoxic chain extender to form the final TBPUs. The final composition, molecular weight, thermal properties, hydrophilicity, and biodegradation rates of the obtained TB copolymers, and the corresponding TBPUs were characterized using 1H-NMR, GPC, FTIR, DSC, and SEM, and contact angle measurements. Results obtained from the lower molecular weight series of TBPUs demonstrated potential use in drug delivery and imaging contrast agents due to their high hydrophilicity and degradation rates. On the other hand, the higher molecular weight series of TBPUs exhibited improved hydrophilicity and degradation rates compared to PL-homopolymer. Moreover, they displayed improved tailored mechanical properties suitable for utilization as bone cement, or in regeneration medicinal applications of cartilage, trabecular, and cancellous bone implants. Furthermore, the polymer nanocomposites obtained by reinforcing the TBPU3 matrix with 7% (w/w) bacterial cellulose nanowhiskers (BCNW) displayed a ~16% increase in tensile strength, and 330% in % elongation compared with PL-homo polymer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call