Abstract

Sustainable functionalization of renewable aromatics is a key step to supply our present needs for specialty chemicals and pursuing the transition to a circular, fossil-free economy. In the present work, three typically stable aromatic compounds, representative of products abundantly obtainable from biomass or recycling processes, were functionalized in one-pot oxidation reactions at room temperature, using H2O2 as a green oxidant and ethanol as a green solvent in the presence of a highly electron withdrawing iron porphyrin catalyst. The results show unusual initial epoxidation of the aromatic ring by the green catalytic system. The epoxides were isolated or evolved through rearrangement, ring opening by nucleophiles, and oxidation. Acridine was oxidized to mono- and di-oxides in the peripheral ring: 1:2-epoxy-1,2-dihydroacridine and anti-1:2,3:4-diepoxy-1,2,3,4-tetrahydroacridine, with TON of 285. o-Xylene was oxidized to 4-hydroxy-3,4-dimethylcyclohexa-2,5-dienone, an attractive building block for synthesis, and 3,4-dimethylphenol as an intermediate, with TON of 237. Quinoline was directly functionalized to 4-quinolone or 3-substituted-4-quinolones (3-ethoxy-4-quinolone or 3-hydroxy-4-quinolone) and corresponding hydroxy-tautomers, with TON of 61.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.