Abstract

To enhance fast and accurate detection of pollution-free green apples for food safety, this paper uses the DETR network as a framework to propose a new method for pollution-free green apple detection based on a multi-dimensional feature extraction network and Transformer module. Firstly, an improved DETR network main feature extraction module adopts the ResNet18 network and replaces some residual layers with deformable convolutions (DCNv2), enabling the model to better adapt to pollution-free fruit changes at different scales and angles, while eliminating the impact of microbial contamination on fruit testing; Subsequently, the extended spatial pyramid pooling model (DSPP) and multi-scale residual aggregation module (FRAM) are integrated, which help reduce feature noise and minimize the loss of underlying features during the feature extraction process. The fusion of the two modules enhances the model’s ability to detect objects of different scales, thereby improving the accuracy of near-color fruit detection; At the same time, in order to solve the problems of slow convergence speed and large calculation amount of the basic network model, the convergence speed of the overall network model is improved by replacing the attention mechanism of Transformer. Experimental results show that compared with the original DETR model, the proposed algorithm has improved in AP, AP50 and AP75 indicators, especially in the AP50 indicator, which has the most obvious improvement reaching a detection accuracy of 97.12%. In the meantime, the trained network model is deployed on the picking robot. Compared with the original DETR network model, its average detection accuracy is as high as 96.58%, and the detection speed is increased by about 51%. Mixed sample detection tests were carried out before and after the model deployment, and the detection rate of the proposed method for non-polluted fruits reached more than 0.95. enabling the picking robot to efficiently complete the task of picking green apples. The test results show that the algorithm proposed in this article exhibits great potential in the task of detecting pollution-free near-color fruits by the picking robot. It ensures pollution-free fruit picking and the application of AI in food safety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.