Abstract

Hydrogel-based piezoresistive sensors have high practical value in many revolutionary applications, such as intelligent and electronic devices. However, with existing hydrogels, it is very difficult to achieve a combination of good mechanical properties, stable conductivity, and simple/green fabrication method. In this study, hybrid organic-inorganic nanoparticles (lignin-silver hybrid nanoparticles, Lig-Ag NPs) were synthesized by using alkaline lignin as the organic component and silver nanoparticle (Ag NPs) as the inorganic component. Interaction between the lignin and Ag NPs leads to the composite of hybrid nanoparticles that not only decreased the release of Ag NPs but also generated dynamically stable semi-quinone radicals in lignin. After compositing with polyvinyl alcohol (PVA) matrix, Lig-Ag NPs provided strong sacrificial hydrogen bonds and facilitated the delivery of electronic. Benefiting from these structural features and the pore-forming effect of ammonia (from Lig-Ag NPs solution), the PVA/Lig-Ag NPs hydrogel exhibits outstanding compressibility, pressure sensitivity, and stability of signal response. This study provides a green and simple design strategy for piezoresistive pressure sensors based on nanocomposite hydrogel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.