Abstract

Advanced exploitation in the green synthesis of nanomaterials has received considerable attention in the recent years. So that, an eco-friendly approach is proposed for the synthesis of silver‑silver chloride nanoparticles (Ag@AgCl-NPs) which does not require any external reducing & capping agents, organic solvent and external halide sources using an aqueous extract green marine alga (Chaetomorpha sp).In order to characterize the formation of Ag@AgCl-NPs, several instruments including UV-vis, FTIR, HR-TEM, EDS mapping, XRD, XPS, SAED and DLS were used. On the other hands, although numerous methods have been reported for the analysis of toxic Hg2+ in drinking water, development of simple, rapid, inexpensive, selective and sensitive sensors still remains a great challenge. Herein, the colorimetric sensor studies of this green synthesized Ag@AgCl-NPs showed an interesting feature for sensing of hazardous Hg2+ in water. The colorimetric assay is based on the concentration - dependent degradation of as-prepared Ag@AgCl-NPs in the presence of Hg2+. The detection limit of this affordable assay is 4.19 nM which is below the defined value by china agency and more importantly is below the defined by the U.S. Environmental Protection Agency for drinkable water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call