Abstract
Crystalline and nanostructured cobalt (CoFe2O4), nickel (NiFe2O4), zinc (ZnFe2O4) and manganese (MnFe2O4) spinel ferrites are synthesized with high yields, crystallinity and purity through an easy, quick, reproducible and low-temperature hydrothermal assisted route starting from an aqueous suspension of coprecipitated metal oxalates. The use of water as a reaction medium is a further advantage of the chosen protocol. Additionally, the zinc spinel is also prepared through an alternative route combining coprecipitation of oxalates from an aqueous solution with thermal decomposition under reflux conditions. The nanocrystalline powders are obtained as a pure crystalline phase already at the extremely low temperature of 75 °C and no further thermal treatment is needed. The structure and microstructure of the prepared materials is investigated by means of X-ray powder diffraction (XRPD), while X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analyses are used to gain information about the surface and bulk composition of the samples, respectively, confirming the expected stoichiometry. To investigate the effect of the synthesis protocol on the morphology of the obtained ferrites, transmission electron microscopy (TEM) observations are performed on selected samples. The magnetic properties of the cobalt and manganese spinels are also investigated using a superconducting quantum device magnetometer (SQUID) revealing hard and soft ferrimagnetic behavior, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.