Abstract

Developing efficient strategy for nanomaterials dispersion is the key for promoting the utilization of cellulose-based composite in energy storage devices. In this study, an instant synthesis method for cellulose nanofiber (CNF)/reduced graphene oxide (rGO) composite film with a deep eutectic solvent (DES) based on choline chloride and urea as a media is developed. This DES shows favorable abilities of recyclability, materials dispersion, and could adjust the pH value for reaction systems of neutral to alkaline which in favor of electrostatic repulsion arising from deprotonated carboxyl groups at the composite surface. As-obtained films feature excellent flexibility, high electrical conductivity (as high as 26.47 S∙cm−1) and well electrochemical properties. Furthermore, a little amount of nitrogen atoms (~3.0 at%) could be introduced in the composite at a mild condition. Overall, this approach offers the potential for cost-effective, environmentally friendly and large-scale production of cellulose-based electrode and numerous advanced applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.