Abstract
This protocol describes the Agrobacterium tumefaciens-mediated nuclear transformation of a microalgae Chlamydomonas reinhardtii, using a gene construct carrying the genes coding for beta-glucuronidase (gus), green fluorescent protein (gfp), and hygromycin phosphotransferase (hpt). The transformation frequency with this protocol as revealed by hygromycin resistance was many fold higher (about 50-fold) than that of the commonly used glass bead method of transformation. The simplicity of Agrobacterium-mediated gene transfer and the high transformation frequency as well as the precision of T-DNA integration will enable further molecular dissection of this important model organism as well as other algal systems to understand basic plant metabolic processes as well as to exploit the systems for biotechnological applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.