Abstract
AbstractRecently, graph neural networks (GNNs) have attracted much attention in the field of machine learning due to their remarkable success in learning from graph‐structured data. However, implementing GNNs in practice faces a critical bottleneck from the high complexity of communication and computation, which arises from the frequent exchange of graphic data during model training, especially in limited communication scenarios. To address this issue, we propose a novel framework of federated graph neural networks, where multiple mobile users collaboratively train the global model of graph neural networks in a federated way. The utilization of federated learning into the training of graph neural networks can help reduce the communication overhead of the system and protect the data privacy of local users. In addition, the federated training can help reduce the system computational complexity significantly. We further introduce a greedy‐based user selection for the federated graph neural networks, where the wireless bandwidth is dynamically allocated among users to encourage more users to attend the federated training of neural networks. We perform the convergence analysis on the federated training of neural networks, in order to obtain some more insights on the impact of critical parameters on the system design. Finally, we perform the simulations on the coriolis ocean for reAnalysis (CORA) dataset and show the advantages of the proposed method in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.