Abstract

We address the sensor selection problem where linear measurements under correlated noise are gathered at the selected nodes to estimate the unknown parameter. Since finding the best subset of sensor nodes that minimizes the estimation error requires a prohibitive computational cost especially for a large number of nodes, we propose a greedy selection algorithm that uses the log-determinant of the inverse estimation error covariance matrix as the metric to be maximized. We further manipulate the metric by employing the QR and LU factorizations to derive a simple analytic rule which enables an efficient selection of one node at each iteration in a greedy manner. We also make a complexity analysis of the proposed algorithm and compare with different selection methods, leading to a competitive complexity of the proposed algorithm. For performance evaluation, we conduct numerical experiments using randomly generated measurements under correlated noise and demonstrate that the proposed algorithm achieves a good estimation accuracy with a reasonable selection complexity as compared with the previous novel selection methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.