Abstract

AbstractIn this paper, we generalize the greedy routing concept to use semi-metric spaces. We prove that any connected n-vertex graph G admits a greedy embedding onto an appropriate semi-metric space such that (1) each vertex v of the graph is represented by up to k virtual coordinates (where the numbers are from 1 to 2n − 1 and k ≤ deg(v)); and (2) using an appropriate distance definition, there is always a distance decreasing path between any two vertices in G. In particular, we prove that, for a 3-connected plane graph G, there is a greedy embedding of G such that: (1) the greedy embedding can be obtained in linear time; and (2) each vertex can be represented by at most 3 virtual coordinates from 1 to 2n − 1. To our best knowledge, this is the first greedy routing algorithm for 3-connected plane graphs, albeit with non-standard notions of greedy embedding and greedy routing, such that: (1) it runs in linear time to compute the virtual coordinates for the vertices; and (2) the virtual coordinates are represented succinctly in O(log n) bits.KeywordsWireless Sensor NetworkLinear TimeDistinct VertexHyperbolic PlaneUnique PathThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call