Abstract

One of the most current routing families in wireless sensor networks is geographic routing. Using nodes location, they generally apply a greedy routing that makes a sensor forward data to route to one of its neighbors in the forwarding direction of the destination. If this greedy step fails, the routing protocol triggers a recovery mechanism. Such recovery mechanisms are mainly based on graph planarization and face traversal or on a tree construction. Nevertheless real-world network planarization is very difficult due to the dynamic nature of wireless links and trees are not so robust in such dynamic environments. Recovery steps generally provoke huge energy overhead with possibly long inefficient paths. In this paper, we propose to take advantage of the introduction of controlled mobility to reduce the triggering of a recovery process. We propose Greedy Routing Recovery (GRR) routing protocol. GRR enhances greedy routing energy efficiency as it adapts network topology to the network activity. Furthermore GRR uses controlled mobility to relocate nodes in order to restore greedy and reduce energy consuming recovery step triggering. Simulations demonstrate that GRR successfully bypasses topology holes in more than 72% of network topologies avoiding calling to expensive recovery steps and reducing energy consumption while preserving network connectivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.