Abstract
Let $\mathcal{N}$ be distributed as a Poisson random set on $\mathbb{R}^d$, $d\geq 2$, with intensity comparable to the Lebesgue measure. Consider the Voronoi tiling of $\mathbb{R}^d$, $\{C_v\}_{v\in \mathcal{N}}$, where $C_v$ is composed of points $\mathbf{x}\in\mathbb{R}^d$ that are closer to $v\in\mathcal{N}$ than to any other $v'\in\mathcal{N}$. A polyomino $\mathcal{P}$ of size $n$ is a connected union (in the usual $\mathbb{R}^d$ topological sense) of $n$ tiles, and we denote by $\Pi_n$ the collection of all polyominos $\mathcal{P}$ of size $n$ containing the origin. Assume that the weight of a Voronoi tile $C_v$ is given by $F(C_v)$, where $F$ is a nonnegative functional on Voronoi tiles. In this paper we investigate for some functionals $F$, mainly when $F(C_v)$ is a polynomial function of the number of faces of $C_v$, the tail behavior of the maximal weight among polyominoes in $\Pi_n$: $F_n=F_n(\mathcal{N}):=\max_{\mathcal{P}\in\Pi_n} \sum_{v\in \mathcal{P}} F(C_v)$. Next we apply our results to study self-avoiding paths, first-passage percolation models and the stabbing number on the dual graph, named the Delaunay triangulation. As the main application we show that first passage percolation has at most linear variance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.