Abstract

The Long Term Evolution (LTE) as a mobile broadband technology supports a wide domain of communication services with different requirements. Therefore, scheduling of all flows from various applications in overload states in which the requested amount of bandwidth exceeds the limited available spectrum resources is a challenging issue. Accordingly, in this paper, a greedy algorithm is presented to evaluate user candidates which are waiting for scheduling and select an optimal set of the users to maximize system performance, without exceeding available bandwidth capacity. The greedy-knapsack algorithm is defined as an optimal solution to the resource allocation problem, formulated based on the fractional knapsack problem. A compromise between throughput and QoS provisioning is obtained by proposing a class-based ranking function, which is a combination of throughput and QoS related parameters defined for each application. The simulation results show that the proposed method provides high performance in terms of throughput, loss and delay for different classes of QoS over the existing ones, especially under overload traffic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.