Abstract
In this paper, we extend our greedy information algorithm to multi-layered networks for improved feature detection. We have developed a new information theoretic network-growing model called greedy information acquisition. The method have shown good performance in extracting salient features in input patterns. However, because networks used in the method are single-layered ones, it has shown some difficulty in dealing with complex problems. In this context, we extend our greedy information acquisition method to multi-layered networks. By multi-layered networks, we can solve many complex problems that single-layered networks fail to do. The new algorithm was applied to two problems: the famous vertical-horizontal lines detection and a drive scene classification problem. In both cases, experimental results confirmed that our method could solve complex problems that single-layered networks fail to do. In addition, information maximization makes it possible to extract salient features in input patterns. The new algorithm can certainly contribute to the extension of neural computing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.