Abstract

The multidimensional assignment (MDA) problem is a combinatorial optimization problem arising in many applications, for instance multitarget tracking (MTT). The objective of an MDA problem of dimension <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</i> ∈ <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N</i> is to match groups of <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</i> objects in such a way that each measurement is associated with at most one track and each track is associated with at most one measurement from each list, optimizing a certain objective function. It is well known that the MDA problem is NP-hard for <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</i> ≥ 3. In this paper five new polynomial time heuristics to solve the MDA problem arising in MTT are presented. They are all based on the semi-greedy approach introduced in earlier research. Experimental results on the accuracy and speed of the proposed algorithms in MTT problems are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.