Abstract

Finding the diameter of a dataset in multidimensional Euclidean space is a well-established problem, with well-known algorithms. However, most of the algorithms found in the literature do not scale well with large values of data dimension, so the time complexity grows exponentially in most cases, which makes these algorithms impractical. Therefore, we implemented 4 simple greedy algorithms to be used for approximating the diameter of a multidimensional dataset; these are based on minimum/maximum l2 norms, hill climbing search, Tabu search and Beam search approaches, respectively. The time complexity of the implemented algorithms is near-linear, as they scale near-linearly with data size and its dimensions. The results of the experiments (conducted on different machine learning data sets) prove the efficiency of the implemented algorithms and can therefore be recommended for finding the diameter to be used by different machine learning applications when needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.