Abstract

The article mainly researches path planning and task allocation problems of multiple mobile robots using A* searching algorithm and greedy algorithm, and solve the shortest path problems such that the robots can move from the start point to reach the multiple target points in a collision-free space, and uses 2-opt exchange heuristic algorithm to improve the shortest path. In this manner, the mobile moves to the final target point through the other points, and construct the motion path using A* searching algorithm and greedy algorithm. The supervised computer control the mobile robot feedback to the start point from the final target point through the other points, and programs a shortest path using 2-opt exchange heuristic algorithm. We develop the user interface to program the motion path of mobile robots via wireless RF interface. It can displays the motion path of the mobile robot on real-time. The simulated results presents that the proposed method can finds the shortest motion path for mobile robots moving to multiple target points from the start point in a collision-free space. Finally, we implement the experiment scenario on the grid platform using the module-based mobile robot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.