Abstract
The closeness and the betweenness centralities are two well-known measures of importance of a vertex within a given complex network. Having high closeness or betweenness centrality can have positive impact on the vertex itself: hence, in this paper we consider the problem of determining how much a vertex can increase its centrality by creating a limited amount of new edges incident to it. We first prove that this problem does not admit a polynomial-time approximation scheme unless $$P=NP$$, and we then propose a simple greedy approximation algorithm with an almost tight approximation ratio, whose performance is then tested on synthetic graphs and real-world networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.