Abstract

Theminimum-degree greedy algorithm, or Greedy for short, is a simple and well-studied method for finding independent sets in graphs. We show that it achieves a performance ratio of (Δ+2)/3 for approximating independent sets in graphs with degree bounded by Δ. The analysis yields a precise characterization of the size of the independent sets found by the algorithm as a function of the independence number, as well as a generalization of Turan's bound. We also analyze the algorithm when run in combination with a known preprocessing technique, and obtain an improved $$(2\bar d + 3)/5$$ performance ratio on graphs with average degree $$\bar d$$ , improving on the previous best $$(\bar d + 1)/2$$ of Hochbaum. Finally, we present an efficient parallel and distributed algorithm attaining the performance guarantees of Greedy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call