Abstract

We propose that the double barrier effect is expected to enhance the tunneling electroresistance (TER) in the ferroelectric tunnel junctions (FTJs). To demonstrate the feasibility of this mechanism, we design a model structure of Pt/BaTiO3/LaAlO3/Pt/BaTiO3/LaAlO3/Pt double barrier ferroelectric tunnel junction (DB-FTJ), which can be considered as two identical Pt/BaTiO3/LaAlO3/Pt single barrier ferroelectric tunnel junctions (SB-FTJs) connected in series. Based on density functional calculation, we obtain the giant TER ratio of 2.210 × 108% in the DB-FTJ, which is at least three orders of magnitude larger than that of the SB-FTJs of Pt/BaTiO3/LaAlO3/Pt, together with an ultra-low resistance area product (0.093 KΩμm2) in the high conductance state of the DB-FTJ. Moreover, it is possible to control the direction of polarization of the two single ferroelectric barriers separately and thus four resistance states can be achieved, making DB-FTJs promising as multi-state memory devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call