Abstract

Plasticized poly(L-lactide) (PLLA) materials have been applied in many fields and the microstructure performance of such materials attracts much attention of researchers. However, few reports declared the hydrolytic degradation ability of the plasticized PLLA materials. In this article, a small quantity of poly(ethylene glycol) (PEG) was introduced into PLLA, which aimed to understand the hydrolytic degradation behavior of the plasticized PLLA materials. The microstructures of the plasticized samples were comparatively investigated using scanning electron microscopy (SEM), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and Flourier transform infrared spectroscopy (FTIR), etc. The results demonstrated that PEG improved the hydrophilicity of sample surface, and the relatively high content of PEG enhanced the crystallization ability of PLLA matrix. The hydrolytic degradation measurement was carried out at 60 °C in an alkaline solution of pH = 12. The results demonstrated that the plasticized PLLA samples exhibited accelerated hydrolytic degradation compared with the pure PLLA sample, and the hydrolytic degradation was also dependent on the PEG content. Further results demonstrated that PEG induced the change of hydrolytic degradation mechanism possibly due to the good dissolution ability of PEG in water, which provided more paths for the penetration of water. Furthermore, the microstructure evolution of the plasticized PLLA during the hydrolytic degradation process was also investigated, and the results demonstrated the occurrence of PLLA crystallization, which was possibly contributed to the decreased hydrolytic degradation rate observed at relatively long hydrolytic degradation time. This work is of great significance and may open a new way for promoting the reclamation of PLLA waste material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.