Abstract

Worm-like micelles have attracted great interest due to their anisotropic structures. However, the experimental conditions for obtaining worm-like micelles are very restricted, which usually causes seriously poor reproducibility. In this work, significantly enhanced accessibility of worm-like micelles is realized by in situ crosslinking polymerization-induced self-assembly (PISA). The reproducibility of worm-like micelles is greatly improved due to the significantly enlarged experimental windows of worm-like micelles in the morphology diagram. Moreover, the reliability of the methodology to enhance the accessibility of worm-like micelles has been demonstrated in various in situ crosslinking PISA systems. The greatly enhanced accessibility and reproducibility of worm-like micelles is undoubtedly cost-effective especially in scale-up production, which paves the way for further application of worm-like micelles with various compositions and functionalities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.