Abstract
In this review article we consider the crack growth resistance of micrometer and sub-micrometer sized samples from the fracture mechanics point of view. Standard fracture mechanics test procedures were developed for macro-scale samples, and reduction of the specimen dimensions by three to five orders of magnitude has severe consequences. This concerns the interpretation of results obtained by micro- and nano-mechanics, as well as the life time and failure prediction of micro- and nano-devices. We discuss the relevant fracture mechanics length scales and their relation to the material-specific structural lengths in order to conduct rigorous fracture mechanics experiments. To ensure general validity and applicability of evaluation concepts, these scaling considerations are detailed for ideally brittle, semi-brittle and micro ductile crack propagation, subject to both monotonic and cyclic loading. Special attention is devoted to the requirements for determining specimen size for various loading types to measure material characteristic crack propagation resistance at small scales. Finally, we discuss novel possibilities of micron and sub-micron fracture mechanics tests to improve the basic understanding of specific crack propagation processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.