Abstract

Black Americans suffer lower life expectancy and show signs of accelerated aging compared to other Americans. While previous studies observe these differences in children and populations with chronic illness, whether these pathologic processes exist or how these pathologic processes progress has yet to be explored prior to the onset of significant chronic illness, within a young adult population. Therefore, we investigated race-related differences in epigenetic age in a cross-sectional sample of young putatively healthy adults and assessed whether lifetime stress and/or trauma mediate those differences. Biological and psychological data were collected from self-reported healthy adult volunteers within the local New Haven area (399 volunteers, 19.8% Black, mean age: 29.28). Stress and trauma data was collected using the Cumulative Adversity Inventory (CAI) interview, which assessed specific types of stressors, including major life events, traumatic events, work, financial, relationship and chronic stressors cumulatively over time. GrimAge Acceleration (GAA), determined from whole blood collected from participants, measured epigenetic age. In order to understand the impact of stress and trauma on GAA, exploratory mediation analyses were then used. We found cumulative stressors across all types of events (mean difference of 6.9 p = 2.14e-4) and GAA (β = 2.29 years [1.57–3.01, p = 9.70e-10] for race, partial η2 = 0.091, model adjusted R2 = 0.242) were significantly greater in Black compared to White participants. Critically, CAI total score (proportion mediated: 0.185 [0.073–0.34, p = 6e-4]) significantly mediated the relationship between race and GAA. Further analysis attributed this difference to more traumatic events, particularly assaultive traumas and death of loved ones. Our results suggest that, prior to development of significant chronic disease, Black individuals have increased epigenetic age compared to White participants and that increased cumulative stress and traumatic events may contribute significantly to this epigenetic aging difference.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call