Abstract

Returns distributions are heavy tailed across asset classes. In this note, Smerlak examines the implications of this well-known stylized fact for the joint statistics of performance (absolute return) and Sharpe ratio (risk-adjusted return). Using both synthetic and real data, He shows that, all other things being equal, the investments with the best in-sample performance are never associated with the best in-sample Sharpe ratios (and vice versa). This counter-intuitive effect is unrelated to the risk-return tradeoff familiar from portfolio theory: it is, rather, a consequence of asymptotic correlations between the sample mean and sample standard deviation of heavy-tailed variables. In addition to its large sample noise, this non-monotonic association of the Sharpe ratio with performance puts into question its status as the gold standard metric of investment quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.