Abstract

The causes of individual variation in memory are poorly understood in wild animals. Harsh environments with sparse or rapidly changing food resources are hypothesized to favour more accurate spatial memory to allow animals to return to previously visited patches when current patches are depleted. A potential cost of more accurate spatial memory is proactive interference, where accurate memories block the formation of new memories. This relationship between spatial memory, proactive interference, and harsh environments has only been studied in scatter-hoarding animals. We compare spatial memory accuracy and proactive interference performance of non-scatter hoarding great tits (Parus major) from high and low elevations where harshness increases with elevation. In contrast to studies of scatter-hoarders, we did not find a significant difference between high and low elevation birds in their spatial memory accuracy or proactive interference performance. Using a variance partitioning approach, we report the first among-individual trade-off between spatial memory and proactive interference, uncovering variation in memory at the individual level where selection may act. Although we have no evidence of harsh habitats affecting spatial memory, our results suggest that if elevation produced differences in spatial memory between elevations, we could see concurrent changes in how quickly birds can forget.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.