Abstract

Crowd segmentation is important in serving as the basis for a wide range of crowd analysis tasks such as density estimation and behavior understanding. However, due to interocclusions, perspective distortion, clutter background, and random crowd distribution, localizing crowd segments is technically a very challenging task. This paper proposes a novel crowd segmentation framework-based on granular computing (GrCS) to enable the problem of crowd segmentation to be conceptualized at different levels of granularity, and to map problems into computationally tractable subproblems. It shows that by exploiting the correlation among pixel granules, we are able to aggregate structurally similar pixels into meaningful atomic structure granules. This is useful in outlining natural boundaries between crowd and background (i.e., noncrowd) regions. From the structure granules, we infer the crowd and background regions by granular information classification. GrCS is scene-independent and can be applied effectively to crowd scenes with a variety of physical layout and crowdedness. Extensive experiments have been conducted on hundreds of real and synthetic crowd scenes. The results demonstrate that by exploiting the correlation among granules, we can outline the natural boundaries of structurally similar crowd and background regions necessary for crowd segmentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.