Abstract
A regular nilpotent Hessenberg Schubert cell is the intersection of a regular nilpotent Hessenberg variety with a Schubert cell. In this paper, we describe a set of minimal generators of the defining ideal of a regular nilpotent Hessenberg Schubert cell in the type A setting. We show that these minimal generators are a Gröbner basis for an appropriate lexicographic monomial order. As a consequence, we obtain a new computational-algebraic proof, in type A, of Tymoczko's result that regular nilpotent Hessenberg varieties are paved by affine spaces. In addition, we prove that these defining ideals are complete intersections, are geometrically vertex decomposable, and compute their Hilbert series. We also produce a Frobenius splitting of each Schubert cell that compatibly splits all of the regular nilpotent Hessenberg Schubert cells contained in it. This work builds on, and extends, work of the second and third author on defining ideals of intersections of regular nilpotent Hessenberg varieties with the (open) Schubert cell associated to the Bruhat-longest permutation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.