Abstract

AbstractWe study a class of combinatorially defined polynomial ideals that are generated by minors of a generic symmetric matrix. Included within this class are the symmetric determinantal ideals, the symmetric ladder determinantal ideals, and the symmetric Schubert determinantal ideals of A. Fink, J. Rajchgot, and S. Sullivant. Each ideal in our class is a type C analog of a Kazhdan–Lusztig ideal of A. Woo and A. Yong; that is, it is the scheme‐theoretic defining ideal of the intersection of a type C Schubert variety with a type C opposite Schubert cell, appropriately coordinatized. The Kazhdan–Lusztig ideals that arise are exactly those where the opposite cell is 123‐avoiding. Our main results include Gröbner bases for these ideals, prime decompositions of their initial ideals (which are Stanley–Reisner ideals of subword complexes), and combinatorial formulas for their multigraded Hilbert series in terms of pipe dreams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.