Abstract

We define a new monoidal structure on the category of collections (shuffle composition). Monoids in this category (shuffle operads) turn out to bring a new insight in the theory of symmetric operads. For this category, we develop the machinery of Gröbner bases for operads and present operadic versions of Bergman's diamond lemma and Buchberger's algorithm. This machinery can be applied to study symmetric operads. In particular, we obtain an effective algorithmic version of Hoffbeck's Poincaré-Birkhoff-Witt criterion of Koszulness for (symmetric) quadratic operads

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.