Abstract
AbstractLong gamma-ray bursts (GRBs) can be linked to the massive stars and their host galaxies are assumed to be the star-forming galaxies within small dark matter halos. We apply a galaxy evolution model, in which the star formation process inside the virialized dark matter halo at a given redshift is achieved. The star formation rates (SFRs) in the GRB host galaxies at different redshifts can be derived from our model. The related stellar masses, luminosities, and metalicities of these GRB host galaxies are estimated. We also calculate the X-ray and optical absorption of GRB afterglow emission. At higher redshift, the SFR of host galaxy is stronger, and the absorption in the X-ray and optical bands of GRB afterglow is stronger, when the dust and metal components are locally released, surrounding the GRB environment. These model predictions are compared with some observational data as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Astronomical Union
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.