Abstract
The enhancement of surface sensitivity by grazing incidence geometry facilitates the investigation of nanostructures in thin films and at surfaces. The technique provides information about the surface roughness, lateral correlations, sizes and shapes of objects (such as, nanoparticles and nanostructures) positioned on top of the surface or in a region near the surface. Grazing incidence small-angle neutron scattering (GISANS) overcomes the limitations of conventional small-angle neutron scattering for extremely small sample volumes in the thin-film geometry. Although real space analysis techniques, such as atomic force microscopy, provide easy access to surface structures, reciprocal space analysis techniques, such as GISANS, provide several advantages: (i) average statistical information over the large illuminated sample surface can be detected and (ii) buried lateral structures can be probed without damage, using the variable-probed depth as a function of the incident angle. To illustrate the potential applications and challenges of GISANS, several different examples of thin nanostructured polymer films are reviewed. Nanostructures in triblock copolymer thin films are studied in the bulk as well as at the polymer-air and the silicon–polymer interface. Confined nanostructures in a dewetted diblock copolymer film are also discussed in terms of contrast and experimental settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.