Abstract
We examined the firing patterns of a chaotically forced leaky integrate-and-fire (LIF) model, and the validity of reconstructing input chaotic dynamics from an observed spike sequence. We generated inputs to the model from the Rossler system at various values of the bifurcation parameter, and carried out numerical simulations of the LIF model forced by each input. For both chaotic and periodic inputs, therotation numbers and the Lyapunov exponents were calculated to investigate the mode-locked behavior of the system. Similar behaviors as in the periodically forced LIF model were also observed in the chaotically forced LIF model. We observed (i)grazing bifurcation with the emergence of qualitatively distinct behaviors separated by a certain border in the parameter space, and (ii) modelocked regions where the output spike sequences are modelocked to the chaotic inputs. We found that thegrazing bifurcation is related to the reconstruction of chaotic dynamics with the LIF. Our results can explain why the shape of the partially reconstructed ISI attractor, which was observed in previous studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.