Abstract

The relationship between biodiversity and ecosystem multifunctionality (EMF) depends on changes in environmental disturbance. Plant and soil biological diversity can mediate EMF, but how these change in response to grazing disturbance remains unknown. Here we present an 8-year experiment on sheep grazing control in alpine grasslands in Gannan Tibetan Autonomous Prefecture, Gansu Province, China. Plant species richness, FRic (functional richness), PD (Faith's phylogenetic diversity), soil biological diversity (bacterial, fungal, and ciliate diversity), and multiple ecosystem functions were measured and calculated. The results showed that increasing grazing intensity caused a decrease in biodiversity and EMF and that biodiversity and ecosystem function differed significantly (P < 0.05) between grazing intensities. EMF was positively correlated with species richness, functional diversity, and soil bacterial diversity (P < 0.05), with 23.6 %, 10.8 %, and 12.1 % of EMF explained by changes in grazing intensity, respectively. The interaction terms of grazing intensity, plant species richness, and soil biological diversity were negatively correlated with EMF (P < 0.05). This shift in the relationship between plant or soil biological diversity and EMF occurs at a grazing intensity index of around 0.7, i.e., the impact of plant species richness on EMF is more significant when the grazing intensity index is below 0.67. The effect of soil biological diversity on EMF is more substantial when the grazing intensity index is above 0.86. Conclusion: High grazing intensity directly affects soil bulk density and pH and indirectly affects EMF by regulating plant species richness and soil biological diversity changes. Loss of plant and soil biological diversity can have extreme consequences under low and high grazing intensity disturbance conditions. Therefore, we must develop biodiversity conservation strategies for external disturbances to mitigate the effects of land use practices such as grazing disturbances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call