Abstract

Visible-infrared person re-identification (VI-ReID) is an emerging and challenging cross-modality image matching problem because of the explosive surveillance data in night-time surveillance applications. To handle the large modality gap, various generative adversarial network models have been developed to eliminate the cross-modality variations based on a cross-modal image generation framework. However, the lack of point-wise cross-modality ground-truths makes it extremely challenging to learn such a cross-modal image generator. To address these problems, we learn the correspondence between single-channel infrared images and three-channel visible images by generating intermediate grayscale images as auxiliary information to colorize the single-modality infrared images. We propose a grayscale enhancement colorization network (GECNet) to bridge the modality gap by retaining the structure of the colored image which contains rich information. To simulate the infrared-to-visible transformation, the point-wise transformed grayscale images greatly enhance the colorization process. Our experiments conducted on two visible-infrared cross-modality person re-identification datasets demonstrate the superiority of the proposed method over the state-of-the-arts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.