Abstract

Abstract Avoiding stress concentrations is essential to achieve robust parts since failure tends to originate at such concentrations. With recent advances in multimaterial additive manufacturing, it is possible to alter the stress (or strain) distribution by adjusting the material properties in selected locations. Here, we investigate the use of grayscale digital light processing (g-DLP) 3D printing to create modulus gradients around areas of high stress. These gradients prevent failure by redistributing high stresses (or strains) to the neighboring material. The improved material distributions are calculated using finite element analysis. The much-enhanced properties are demonstrated experimentally for thin plates with circular, triangular, and elliptical holes. This work suggests that multimaterial additive manufacturing techniques like g-DLP printing provide a unique opportunity to create tougher engineering materials and parts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call