Abstract

AbstractLand use and climate change alter species distributions worldwide, and detecting and understanding how species ranges shift can facilitate conservation planning and action. Following extirpation from most of the contiguous United States, gray wolves (Canis lupus) have partially recolonized former range in the western Great Lakes region, but it is unknown how land use and climate change may alter amounts of wolf habitat. Using wolf observation data collected during winters 2017–2020 in Minnesota, Wisconsin, and Michigan, we created ensemble models to predict how land use and climate change may affect the amount of wolf habitat within these states. A projection model for the western Great Lakes region suggested three of four scenarios of land use and climate change will lead to 9%–35% increases in wolf habitat, while a solely climate‐based projection model supported our expectation that changes in climate, in isolation, will have limited effect on current wolf range. Our results support stable or increasing amounts of wolf habitat in the western Great Lakes region during the 21st century, suggesting limited or no adverse effects on the current distribution or further recolonization of wolves. Our findings can inform policy development regarding wolf conservation and identify areas where recolonization is plausible, thus where promoting human–wolf coexistence is most pertinent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.