Abstract
In this work we extended an energy-integrated neutrino transport method to facilitate efficient, yet precise, modeling of compact astrophysical objects. We particularly focus on core-collapse supernovae. We implemented a gray neutrino-transport framework from the literature into FLASH and performed a detailed evaluation of its accuracy in core-collapse supernova simulations. Based on comparisons with results from simulations using energy-dependent neutrino transport, we incorporated several improvements to the original scheme. Our analysis shows that our gray neutrino transport method successfully reproduces key aspects from more complex energy-dependent transport across a variety of progenitors and equations of state. We find both qualitative and reasonable quantitative agreement with multi-group M1 transport simulations. However, the gray scheme tends to slightly favor shock revival. In terms of gravitational wave and neutrino signals, there is a good alignment with the energy-dependent transport, although we find 15-30<!PCT!> discrepancies in the average energy and luminosity of heavy-lepton neutrinos. Simulations using the gray transport are around four times faster than those using energy-dependent transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.