Abstract

Neuroimaging studies have identified alterations in frontostriatal circuitry in obsessive-compulsive disorder (OCD). Voxel-based morphometry (VBM) allows for the assessment of differences in gray matter density across the whole brain. VBM has not previously been used to examine regional gray matter density in pediatric OCD patients and the siblings of pediatric OCD patients. Volumetric magnetic resonance imaging (MRI) studies were conducted in 10 psychotropic naïve pediatric patients with OCD, 10 unaffected siblings of pediatric patients with OCD, and 10 healthy controls. VBM analysis was conducted using SPM2. Statistical comparisons were performed with the general linear model, implementing small volume random field corrections for a priori regions of interest (anterior cingulate cortex or ACC, striatum and thalamus). VBM analysis revealed significantly lower gray matter density in OCD patients compared to healthy in the left ACC and bilateral medial superior frontal gyrus (SFG). Furthermore, a small volume correction was used to identify a significantly greater gray matter density in the right putamen in OCD patients as compared to unaffected siblings of OCD patients. These findings in patients, siblings, and healthy controls, although preliminary, suggest the presence of gray matter structural differences between affected subjects and healthy controls as well as between affected subjects and individuals at risk for OCD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.