Abstract

Gravure printing is an attractive technique for patterning high-resolution features (<5 μm) at high speeds (>1 m/s), but its electronic applications have largely been limited to depositing nanoparticle inks and polymer solutions on plastic. Here, we extend the scope of gravure to a new class of materials and on to new substrates by developing viscous sol-gel precursors for printing fine lines and films of leading transparent conducting oxides (TCOs) on flexible glass. We explore two strategies for controlling sol-gel rheology: tuning the precursor concentration and tuning the content of viscous stabilizing agents. The sol-gel chemistries studied yield printable inks with viscosities of 20-160 cP. The morphology of printed lines of antimony-doped tin oxide (ATO) and tin-doped indium oxide (ITO) is studied as a function of ink formulation for lines as narrow as 35 μm, showing that concentrated inks form thicker lines with smoother edge morphologies. The electrical and optical properties of printed TCOs are characterized as a function of ink formulation and printed film thickness. XRD studies were also performed to understand the dependence of electrical performance on ink composition. Printed ITO lines and films achieve sheet resistance (Rs) as low as 200 and 100 Ω/□, respectively (ρ≈2×10(-3) Ω-cm) for single layers. Similarly, ATO lines and films have Rs as low as 700 and 400 Ω/□ with ρ≈7×10(-3) Ω-cm. High visible range transparency is observed for ITO (86-88%) and ATO (86-89%). Finally, the influence of moderate bending stress on ATO films is investigated, showing the potential for this work to scale to roll-to-roll (R2R) systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call